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Abstract-A general but essentially plane micro-mechanical model for the investigation of longi
tudinal shear or combined loading in continuous fibre-reinforced metal-matrix compositcs is
presented. The model is based on the assumption that every cross-section perpendicular to the fibres
deforms the same way. With this model shear. tcnsion or compression in longitudinal or transverse
directions or any combination of these loading types can be invcstigated. Numerical results are
presented for the deformation of continuous fibre-reinforced metal-matrix composites in longi
tudinal shearing and longitudinal shearing combined with longitudimlltension. Results on the effect
of the fibre concentration. when the material is loaded in transverse tension. are also presented.
Details of the finite strain elastic-plastic behaviour of the continuous fibre-reinforced mctals under
longitudinal shear <Ire discussed.

l. INTRODUCTION

The continuous fibre-reinforced metal-matrix composites. which typically consist of alu
minium reinforced by long brittle boron fibres. is one of several advanced materials which
has been developed in the last decade in order to combine the metallic ductility with the
high strength of the fibres. The aim is to achieve a material possessing a high strength as
well as a high toughness.

In research on the mechanical properties of continuous reinforced metal-matrix com
posites attention is typically focused on the behaviour of the material when loaded in the
fibre direction. where the fibres have the strongest effect on the overall strength and stiffness.
However loading in the plane perpendicular to the fibres or shearing 41 long the fibre direction
are ulso important situations that have to be clarified in order to characterize the material.
Consider. for instance. a large thin-walled tube with circular cross-section. consisting of a
ductile metal reinforced by long fibres of a brittle high-stiffness ceramic material. with the
fibres parallel to the tube axis [see e.g. Dvorak et al. (1988)]. If such a tube is subjected to
twisting or internal pressure the material will undergo shearing along the fibres or elongation
perpendicular to the fibres.

In order to model the behaviour of the continuous reinforced material when subjected
to longitudinal shear. transverse or longitudinal tension or compression. or any combination
of these loads. a special cell-model analysis is developed in the present p'lper. In this cell
model the full three-dimensional displacement fields are represented in terms of a planar
type analysis. Finite strain elastic-plastic behaviour of the metal-matrix is accounted for.
while the fibres are described as elastic.

Related cell-model analyses have been used by Christman et al. (1989). and Tvergaard
(1990) in detailed studies of the properties of whisker reinforced aluminium. The short
fibre-reinforced metal-matrix composites have some similarity with continuous reinforced
metals. but the former has the disadvantage of producing large stress concentrations around
the edges of the whiskers. which will eventually lead to void nucleation. as described by
Nutt and Needleman (1987).

A different method has been used by Teply and Dvorak (1988). who apply the minimum
principles of plasticity as the basis of their analysis to predict approximate overall properties
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Fig. I. Cross-section pcrpendicular to the continuous fibres.

of Aluminium Boron composites. Recent investigations of Brockenbrough ct al. (1990)
and Rrockenbrough and Suresh (1990) usc cell-model analyses to study the geometrical
ellccts of fibre distribution and shape on the deformation of continuous fibre-reinforced
metal-matrix composites.

A thorough experimental study of the properties of Aluminium Boron composites by
Dvorak ct al. (19XX) suggests debonding along the interface between the fibre and the
matrix as one possible mechanism that contributes to the final material behaviour. The
present model docs not account for debonding, but assumes perfect bonding at the interf:,ce
between the matrix and the fibres [as in Christman ('( al. (19X\); Tvcrgaard (1\)90); Teply
and Dvorak (19XX)].

2. PROIlLErv! ).'ORM tJ I.ATIO:"

The cro%-section perpendicular to the continuous fibres (Fig. I). shows a regular array
of fibn.:s, with the spacings A" and IJ" in the initial configuration. and the fibre radius rr. In
comparison with the micrograph of a cross-section in an Aluminium Boron composite
shown in Dvorak c( al. (19~Hn the assumption of a periodic distribution of fibres over the
cross-section is a prelly good approximation to the real material. This distribution makes the
hatched area a representative unit cell. when shear, tension or compression in longitudinal or
transverse directions or any combination of these loads are considered (i.e. longitudinal
shearing combined with plane and axial deformation).

Figure 2 shows the deformed unit cell at two difl"erent stages of shear deformation,
achieved through a constant displacement VIII of the upper edge of the unit cell in the x)
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Fig. 2. Deformed unit cell at two different stages of shear deformation. achieved through dis
placement of the upper edge in the x' direction (perspcctive drawing).
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direction. The upper edge of the unit cell is prescribed to remain straight. since this follows
from the periodicity conditions. The average measure of the degree of shear deformation
used here is the quantity}' defined by

y = (Jill!B (I)

where B is the current dimension of the unit cell in the x 1-direction (corresponding to the
initial dimension Bo). A Cartesian coordinate system Xi is used as reference. with x I and x 1

being coordinate directions in the cross-section perpendicular to the fibre and x 3 following
the fibre direction. Figure 2 shows directly the deformed finite element net and is thus an
example of the output of the model presented here. Only the deformations of the unit cell
are shown in Fig. 2. but it is noted that the corresponding deformations of the full
cross-section (Fig. 1) are antisymmetric about the planes x 2 = 0 and x 2 = Bo• while the
deformations are symmetric about Xl = 0 and Xl = A o. The fibre volume fraction/for the
model material illustrated in Figs I and 2 is

(2)

The initial dimension Co of the unit cell along the fibre direction used for convenience
in the problem formulation is the distance between two arbitrarily chosen cross-sections
(Fig. 3). The current dimensions of the unit cell arc denoted A. Band Cand the contravariant
displacement components on the reference base vectors are denoted ,lo

When sheared ,1I0ng the fibre direction. the material will deform in all three coordinate
directions. but with the restriction th<lt every cross-section parallel to the one shown in Fig.
I must deform in the s<lme w<ly. This is the situation illustrated schematically in Fig. 3.
where it is seen that the displacement gradients must be subjected to the following boundary
conditions in the xl-direction:

/I,', = O. for every Xl

Id = O. for every Xl

/I:', = !1C/C1h for every Xl. (3)

Here the comma denotes covariant differentiation in the initial configuration of the material.
while !1C is the dilTerence between the current length C and the initial length Co of the unit
cell in the llbre direction.

The boundary conditions for the shear problem are

c

8

.,
Fig. 3. C~oss-section perpendicular to the Xl direction. The deformation is restricted so that every
cross-sectIon perpendicular 10 the fibres must deform in the same way. From displacement vectors
!!I and !!: having the same Xl and x: coordinates the boundary conditions for the displacement

gradients are found.
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u' = o. t, = t ' = o.
til = .~. t 2 = t' = o.
li 2 = o. t I = O.

Ii' = B. t ' = O.

IiI.' = O. Ii.', = O.

x' = 0

x' = .-I,.

Ii' = O. x' = 0

li'=(II,. x 2 =8"

Ii.', = t ClIo \,1 = 0 (4)

where T' are the components of the nominal surl~lce tractions. (The dot means the incremen
tal quantity.) The values of the constants .~. Band t are determined so that equilibrium
is satisfied as described in (13).

Instead of prescribing the shear stress increment it is chosen in the present cell model
to consider problems with a prescribed increment in the displacement of the upper edge of
the unit cell. as specified by (4). Conditions of longitudinal shear are often specified such
that A = t = O. This is one of the possibilities included in (4). and this may lead to non
zero values of the average tractions S, and S, [sec ( 13)]. In the computations to be presented
here it is preferred to consido.:r shear with the values of these overall tractions prescribed.

The elastic-plastic deformations of the matrix material arc taken to be descrihed hy
classical fellow theory with isotropic hardening. In thc analysis of SiC Whisker reinforced
Aluminium by Christman t'l al. (llJl\l») an dasticviscoplastic J, !low theory has becn used.
but due to an expected small strain rate sensitivity ofAluminiulll. time independent plasticity
theory is used here.

The finite strain generalization of J: llow thcory used here has been discussed hy
Hutchinson (1973) and applied in scveral prcvious analyscs [sce e.g. Needleman and Tver
gaard (1977) or Tvergaard (19H2) I. ;\ convected coordinate Lagrangian formulation of the
lidd equations is used. in which .£1" and G" are metric tens\lfS in the initial and currcnt
configurations respectively. with delerminants .£I and G. and 11" = ~(G,,-g,,) are thc covari
ant componcnts of the Lagrangian strain tensor. The contravariant components of the
Kin;hholr stress tcnsor arc related to the componcnts o!" thc Cauchy stress tensor through

/
e

rll = I (TIl.

\; (J
(5)

The im;rcll1l.;ntal strcss strain relation IS i" = L',.I/ikl' wherc L',.I are the instantaneous
moduli ofJ:-llow theory. given hy

Here E is Young's modulus. I' is the Poisson ratio and E, is the tangent modulus for the
true strcss-Iogarithmie strain curve. Thc plasticity parameter. '1.. is givcn hy

:x = {o.
I.

J: < (J: l",." or

J: ~ (J:)",." and

.i:<o

.i: ~ 0
(7)

where (J:)m" is the maximum value of the J:-invariant achieved during the loading history
until the current step. The Kirchhofr stress dcviator is

(H)

and the von Mises stress rr,. used in the./: flow theory. is given hy
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a, = J~Slr5'j( = j3i;).

The material is chosen to follow a simple power hardening law of the form

871

(9)

( 10)

where € is the total true strain. The strain hardening exponent is n, and the initial yield

stress is a".
The fibres are modelled as elastic and the instantaneous moduli in the fibres are taken

[0 be given by an expression analogous to (6), with Young's modulus and Poisson's ratio
specified by values Er and Vr and with no plastic deformation of the fibres (7 = 0).

3. METHOD OF ANALYSIS

The numerical incremental solution of the model problem is based on a Lagrangian
formulation of the field equations. In temlS of the covariant displacement components II,

on the base vectors of the Cartesian reference coordinate system the covariant components
of the Lagrangian strain tensor are given by

( II )

The incremental form of the equiliorium equations used here is the incremental principle
of virtual work

where V and S arc the volume and surface, respectively, of the body in the reference
configuration, and the terms bracketed in (12) are included to prevent drifting of the
solution from the equilibrium path [see e.g. Tvergaard (1984»). Approximate solutions of
(12) are obtained by using a finite clement approximation of the displacement fields.

The deformations to be considered here can be divided into two types; one type is the
deformations which arc described by the deformation of the cross-section, and the other
type is the deformations which make the unit cell change its length in the fibre direction,
assuming that all cross-sections deform the same way (as shown in Fig. 3).

The first type ofdeformation can be described in the finite element model by an clement
with only planar interpolation functions, i.e. interpolation functions depending solely on
the x I and x! coordinates (see Fig. I), while the second type of deformation requires only
a simple constant interpolation function, which is determined by the displacement gradient
u\, according to eqn (3).

The clement used in the model for shear and for shear combined with elongation is a
simple three node triangular element, having 10 degrees of freedom. The three displacement
components on the cross-section are represented by the first nine degrees of freedom with
linear interpolation functions, and the last degree of freedom describes the elongation in
the fibre direction.

The displacement increments related to the 10th degree of freedom in every element
(describing the elongation) have the same value for all clements. Thus only one row in the
global stiffness matrix is related to the 10th degree of freedom for all clements. This means
that the band width of the global stiffness matrix will be quite large, but using a skyline
solver, and making the column with the high skyline the last one, the computational effort
is reduced. It is noted that when investigating the loading of the material perpendicular to
S.\S ~'):7-r



the tibres. conditions of plane strain are met. and then only six degrees of freedom are used
per element.

The approach described here using an essentially plane model in the description of the
shear behaviour of this composite material provides much lower computational costs than
a full three-dimensional solution of the same problem. Yet very complex loadings. such as
shearing along the tiber direction combined with axial and trOlnsverse tension or
compression. can be studied with this model.

The boundary conditions (ol) are implemented by 01 special Rayleigh - Ri tz tlnite element
method due to Tvergaard (1976). in which the special parameters chosen as unknowns arc
the displacement increments ,~. Band t of the nodes on the sides of the unit cell and the
value {'III of the increment in the displacement of the upper edge of the unit cell [see (ol)].
In the solution of the linear algebraic equations for these parameters the value ('III is taken
to be prescribed. and the unknown increments A. Band t are determined so that the
average true stresses normal to the surfaces of the unit cdl are all equal to prescribed values
5 1.5, and 5,. The average tractions normal to the three types of cd I surfaces are

(T 1
) = [(0- 1 )BC(BIIC II )] = 51

(T') = [(o-')AC/(AIICII )] = 5,

(T') = [(o-')AB/(A oBo)] = 5,. ( 13)

Here (0- 1
). (0-') and (0-') arc the average true normal stresses on the surfaces of the unit

cell. (The average stress (0- 1
) is the stress on the cell surface with the side Band C. which

is perpendicular to thell-direction. The average stress (0-') is the stress on the cell surface
with the sides A and C. perpendicular to the x I-di rection and (0-') is the stress on the
surface with the sides A and 1J. perpendicular to the .l '-direction of the unit cell in the initial
configuration. )

-I. RESIJl.TS

4.1 .."'!Ieorin.'l h,r displacement (ir t!le upper e(Zi}e of t!le unit cel!
The results of shearing the unit cell through a constant tangential displacement [fill of

the upper edge. while the average true normal stresses on the sides of the unit cell are all O.
<Ire presented in Fig. 4. where the average she~lr stress. (r). on the upper side of the unit
cell (x' = Bo). is shown as a function of the shear measure. i'. defined in (I) (in Fig. 4 (r)

Shear
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Fig. -I. The average shear stress divided by V 3fT. as a funclion of i' U = lJ.2X).
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Fig. 5. The changes in the relative side lengths of the unit cell as a function of y.

is divided by the quantity j3lJy ). The boundary conditions are implemented by the Rayleigh
Ritz finite element procedure, with the prescribed values S I = S! = S J = 0 [see (13»).

In the analysis of shear deformations a fibre volume fr~lction off= 0.28 was used. The
strengthening effect is not overwhelming ~lt this concentration. Thus the shear stress <r)
is only 8% greater than the shear stress in the material with no fibres at a value of y =0.4.
The material parameters employed for the present study arc n = 10, lJJE = 0.004, E = 72.4
GPa. lO = 0.33 for the matrix material. and the clastic constants of the fibres arc taken to
be specified by EdE = 5.71 and lOr = 0.21. These values do not represent a particular
material. but arc chosen for convenience.

During the shear deformation of the unit cell the dimensions A. Band C increase by
,lmOUntS denoted by ~A, ~B and ~c. respectively, as shown in Fig. 5. When attention is
focused on the change in the length of the side B it is seen that in the beginning ~B is
positive, corresponding to an increase in the height of the unit cell. Further displacement
of the upper edge of the unit cell leads to a change in this behaviour when a greater part
of the cross-section has bt.'Come plastic. Thus the height B is decreasing, when y becomes
greater than 0.0 (5 and after a deformation of y greater than 0.05, ~B is actually negative,
corresponding to a lower height of the unit cdl compared to the initial value Bo•

The other dimensions of the unit cell also change. Thus the length, C, in the fibre
direction is increasing while the length A is reduced, corresponding to a contraction of the
material in the xl-direction.

Looking at the deformations of the unit cell at the overall deformation y =0.2, shown
in Fig. 6a. one finds that the <kformations near the top (x 2 :::: B) are small, while the

(a)

0.01

0.00

0.10 .30

0.15 1.5,

Fig. 6. Contours of conslanl von Mises stresses and corresponding strain contours for a shear
deform..-d material at 'I = 0.20 (f= 0.28).
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deformations at the bottom of the unit cell are quite large. Especially the maximum
deformation is achieved just below the fibre along the side x I = A. The measure of effective
strain used here is simply that obtained from the uniaxial stress-strain law (10). when the
current value of the von Mises stress is substituted. Shown in Fig. 6b are the corresponding
levels of the von Mises stresses.

Shearing the composite to the overall deformation. " = 0.65, does not create any
unloading zones in the material with this volume concentration (f = 0.28), in contrast to
the plane strain situation created by transverse tension are described later. As shown in
Fig. 7a-b, the effective strains and the von Mises stresses are quite large in some areas in
the materiaL at the level,' = 0.65, and it is likely that debonding will occur in the part of
the unit cell just below the fibre, close to the side Xl = A. This would mainly depend on the
direction and the size of the shear and normal stresses along the interface as described by
Needleman (1990) or Tvergaard (1989).

The results discussed here are shown in Fig. 2. where the deformed unit cell is shown
at I' = 0.05 and in a perspective drawing. Especially the large local strains obtained in the
area just below the fibre can be recognized in Fig. 2. at " = 0.65.

It is noted that the shear results have great similarity with what would be found as a
result of twisting a thin-walled cylindrical tube made of this materiaL having the fibres lying
in the direction of the cylinder axis. as in the tube shown by Dvorak c( al. (1988).

4.2. Comhined (ension and s!tear
Combined 10'lding of the material in shear and axial tension has been obtained by

displacement of the upper edge of the unit cell and prescribing displcements t, so that the
average true stress. <a,). in the libre direction is equal to one third of the average shear
stress, (r). at the upper surface of the unit cell. Thus

( 14)

The problem of determining the increments in the displacements of the upper edge and the
sides so that eqn (14) is satisfied and the average true normal stresses on the remaining
surfaces are both zero, ean again be solved using Tvergaard's method [sec Tvergaard
(1976»).

The average shear stress at the upper surface of the unit cell is shown in Fig. 8 as a
function of the shear measure ". Again libre volumc fractions off= 0.28 and f = 0 was
used. In Fig. 9 the change in the side lengths arc shown as functions of I"~ and it can be
noticed that no increase in the height of the unit celL lJ, is seen in this case. It is further

(a)

0.\

0.21
0.3

Fil!. 7. Contours of constant von Mises stresses and corresponding strain contours for a shear
, deformed material at 7 = 0.65 U O.:!81.
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Combined loading

tension and shear
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002 010 020 1

Fig. K. C~)mbined loading. The average shear stress divid~'d by J3tr, as a fum:tion of,'. The normal
stress (not shown) in the fibre direction is onc third of the average shear stress (f = O.:!K).
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Fig. 9. The change in thc rdative length of the sidt: kngth of the unit cdl as a function of y.

seen that only a little increase in the length in the fibre direction is achieved, corresponding
to the great stiffness of the material in this direction due to the reinforcement.

The results obtained here may also be compared with the behaviour of a thin-walled
tube made of this material. Then the present loading situation corresponds to combined
twisting and axial tcnsion in a metal tube reinforced by long continuous fibres in the axial
direction.

4.3. Plane deformation perpendimlar to the jihre direction
The behaviour of the fibre composite when exposed to plane deformation perpendicular

to thc fibre direction may also be studied in the contcxt of the general model for the
investigation of shear deformation proposed here. However, in the plane strain com
putations advantage is taken of the fact, that only six degrees of freedom are needed for
each triangular element.

The linear strain, ell' and dimensionless normal nominal stress, SII' at the upper surface
of the unit cell (x 2 = 8 0 ) are used as overall measures for comparison of materials with
different fibre concentrations. These quantities are defined by
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Fig. 10, Loading perpendicular to the fihre direction, Engineering stress·strain curves for differcnt
volume fractions of the continuous fibres.

( 15)

Shown in Fig. 10 arc stress-strain curvcs for materials with dillerent volume fractions of
fibres. It is scen that only little influcnce on the overall behaviour is found when thc fibre
volume fractions arc less than 10°1.1 U < 0.1). In the material withf = 0,28 the overall stress
is about 12% higher than that in the pure matrix material, of an overall strain ell = 0.1, A
general trend in the behaviour of the materials is that when the volume fraction is higher
th'lnf = 0,28 the strengthening elfect increases fast with an increasing concentration, which
must be a result of increasing interaction between neighbouring fibres,

Unloading also occurs in the composite. for example in the material with f = 0,28
when the overall strain is 0,085, Forf = 0.50 unloading is seen already at overall strains of
0.015, It appears that this is a result of significant stress redistributions associated with
strongly non-linear matrix behaviour and strong interaction with clastic libre deformations
at high values off

Quite large concentrations ofeffective strains 'Ire found ncar the fibre, and mechanisms
such as debonding can be expected to influence the behaviour. depending on the directions
of the current stresses,

In relation to the tube made of a continuous fibre reinforced metal, the analysis of a
composite under transverse tension in the present section may be seen as representing a
tube under internal pressure.

5. CONCLUSION

Clearly. fibres give strong improvements of the tensile properties in the direction
parallel with the fibres.

The present model gives an accurate tool for analyzing the elfect of continuous libres
on other types of loadings, without having to go into a full three-dimensional analysis.

It is found for shear loading that the strengthening effect is much smaller than in thc
axial tension loading, but when sheared to large valucs of t' large stresses ncar the interface
between the matrix and the fibre arc the result.

For transverse tension it is found that the strengthening effect is very small (less than
4% at ell < 0.1) for composites with a volume fraction of fibres less than 0.1, but in
composites with f = 0.28 or f = 0.50 a considerably strengthening effect is seen when the
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material is deformed. Analogous effects of the reinforcement concentrations are found in
a recent work in particle reinforced ductile materials by Bao et al. (1990).

,·lcknol\·ledgement-Prof. Viggo Tvergaard of the Technical University of Denmark for useful discussions and
advice during the work.
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